YOUR WAY TO CERTIFICATION SUCCESS

Contents

1. Introduction - OSI and TCP/IP	1
2. Cisco IOS Essentials	2
3. Router Password Recovery	3
4. IPv4 Addressing	4
5. IPv6 Addressing	6
6. Subnetting	7
7. Routing Protocols - EIGRP	10
8. Routing Protocols OSPF	12
9. Network Address Translation (NAT)	14
10. Access Control Lists (ACLs)	15
11. VLANs and VTP	16
12. Ether Channel	17
13. Spanning Tree Protocol	18
14. Router Redundancy (VRRP/HSRP)	20
15. Frequently Used Commands	22

Copyright © 2014 SimulationExams.com

YOUR WAY TO CERTIFICATION SUCCESS

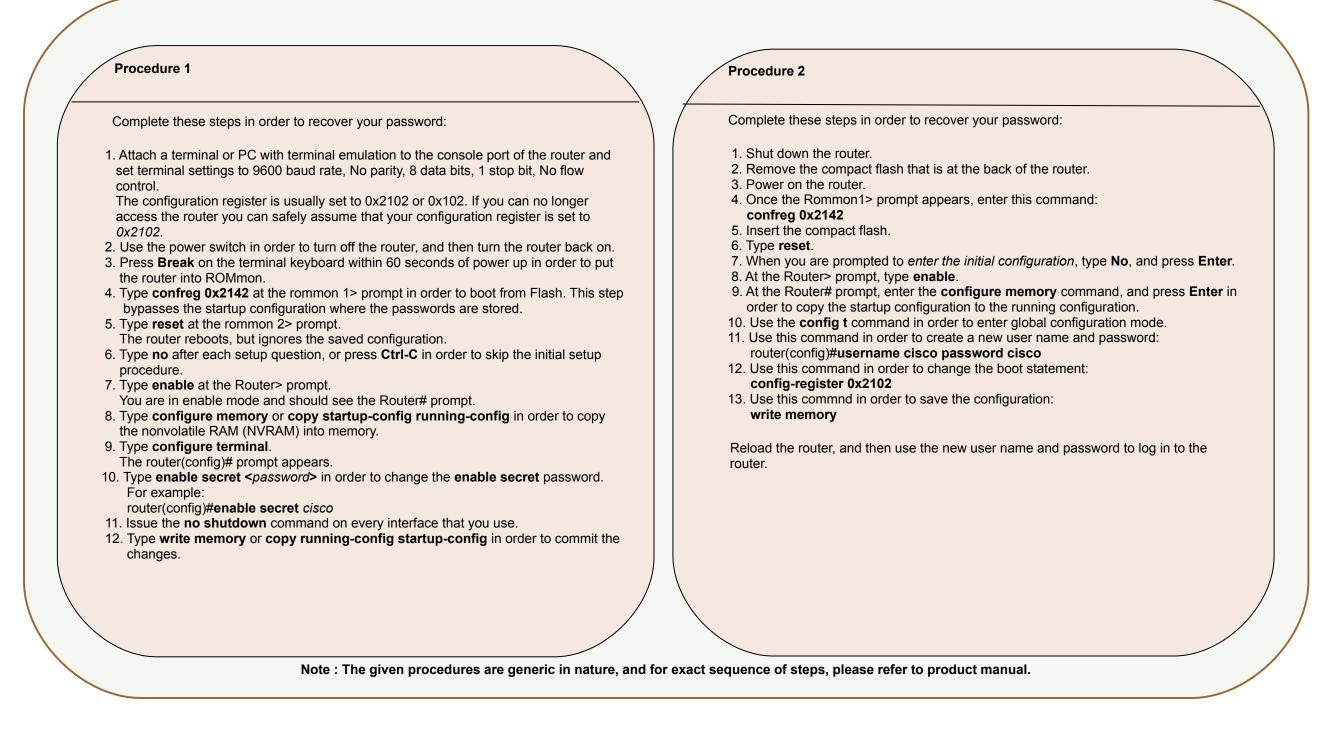
Cisco[™] CCNA : OSI and TCP/IP

Application : Responsible for identifying and establishing the availability of desired comm partner and verifying sufficient resources exist for comm. Ex: FTP, SMTP	
Presentation : Responsible for presenting the data in standard formats. Some Presentation layer standards are JPEG, MPEG, MIDI, PICT, Quick Time, TIFF.	TCP/IP MODEL Application : Defines TCP/IP application protocols and how
Session : Responsible for co-ordinating communication between systems/nodes. Some of the session layer protocols and interfaces: NFS, RPC, SQL, ASP, DNA SCP	host programs interface with transport layer services to use the network. Ex: FTP, SMTP, Telnet
Transport : Responsible for multiplexing upper-layer applications, session mgmt tearing down of virtual circuits, flow control and to maintain data integrity.	Transport : Provides communication session management between host computers. Ex: TCP, UDP
Network : Responsible for sending packets from the source network to the destination network using routing methods. Routers work at network layer.	Internet : Performs routing of IP datagrams. Ex: IP, ARP, ICMP
Datalink : Consists of LLC sublayer and MAC sublayer. LLC handles error control, flow low control, framing etc. MAC handles access to shared media such as ethernet.	Physical : Controls the hardware devices and media that make up the network.
Physical : Responsible for ultimate transmission of data over network communications nedia. Some of the standard interfaces at physical layer are EIA/TIA-232, V.24,V.35, HSSI	
	Port numbers used by TCP/UDP
ne important port numbers	0-255 : Used for public applications 255-1023 : Assigned to companies Above 1023 : Used by upper layers to set up sessions with other hosts and by
P : Port 20-21 Telnet : Port 23 DHCP : Ports 67 and 68 POP3 : Port 110 P : Port 69 SMTP : Port 25 DNS : Port 53 HTTP : Port 80	TCP to use as source and destination addresses.

CCNA Network Simulator CCNA

CCNA Exam Simulator CCENT Exam Simulator

or <u>CCNA ICND2 Exam Simulator</u>


YOUR WAY TO CERTIFICATION SUCCESS

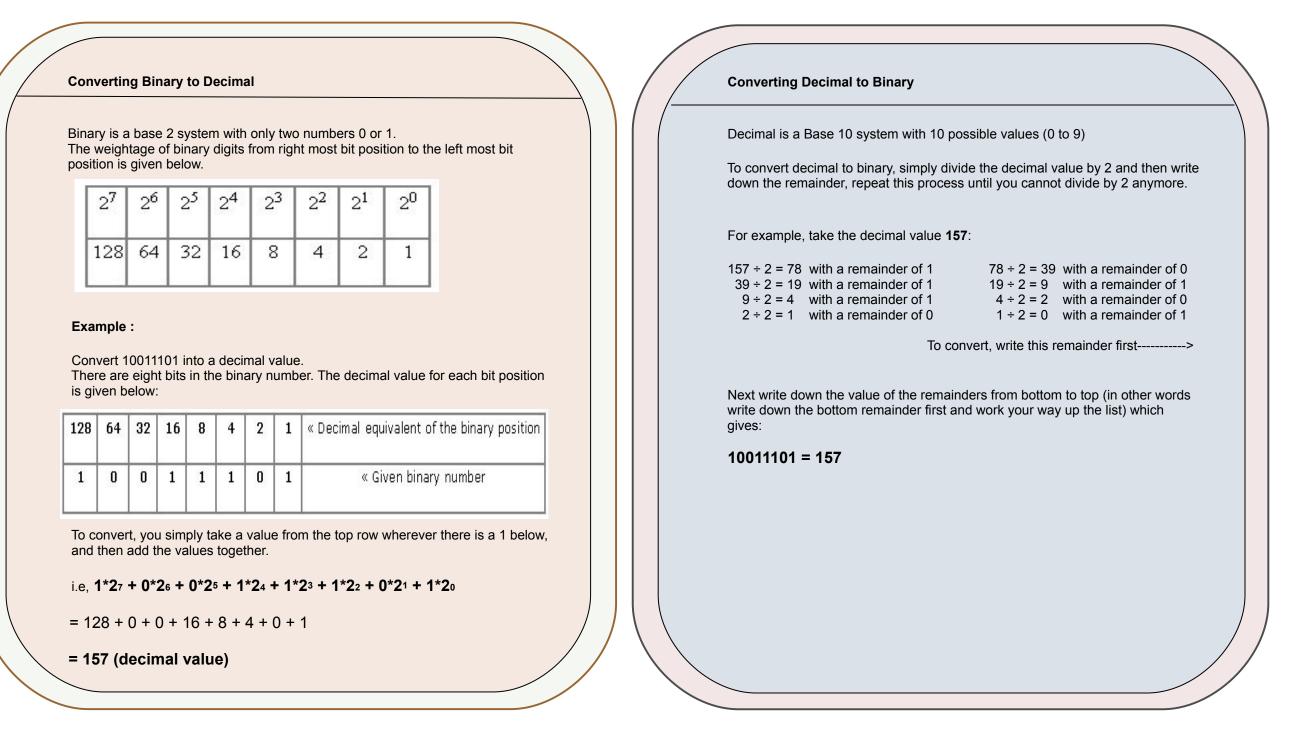
Cisco™ CCNA : IOS

Router Cursor Commands Internal memory components of a cisco router <ctrl> A: Move to the beginning of the command line **ROM** : Memory containing micro-code for basic functions to start and maintain the router. <ctrl> E: Move to the end of the command line RAM/DRAM : Stores the running configuration, routing tables, and packet buffers. NVRAM : Memory that does not lose information when power is lost. Stores the system's <ctrl> F: Move forward one character, same as using "Right Arrow" configuration file and the configuration register. <ctrl> B: Move backward one character, same as using "Left Arrow". Flash Memory : Stores the compressed IOS image. <ctrl> P: Repeat Previous command, same as using "Up Arrow" <ctrl> N: Repeat Next (more recent) command, same as using "Down Arrow" <esc> B: Moves to beginning of previous word. Router boot configuration commands **Router Default Boot Sequence for Cisco IOS** <esc> F: Moves to beginning of next word. <ctrl>R: Creates new command prompt, followed by all the **boot system ROM** : boots from system ROM 1. NVRAM 3. TFTP server characters typed at the last one. boot system flash <IOS file name> : boots 2. Flash (sequential) 4. ROM IOS from flash memory boot system tftp <IOS file name> The router first looks at Startup Config file in NV <tftp_addr> : boots IOS from a tftp server RAM, if not available, it falls back to Flash, then to TFTP and then to ROM. **Configuration Register Command** Router modes of operation include **Router passwords Router(config)# config-register** 0x10x (where that last x is 0-F in hex), when the last x is: 0 = boot Mode-----> Prompt into ROM Monitor mode; 1 = boot the ROM IOS; 2 - 15 = look in startup-config file in NVRAM. Enable password user exec----> Router> Console password Privileged-----> Router # Enable Secret global config-----> Router(config)# Virtual terminal password (vty) Cisco router configurable locations Interface config-----> Router(config-if)# Auxiliary password Console port, Virtual Terminals (vty), Auxiliary port, TFTP server and Network management station More info Three ways router learns to forward packets To enable the Cisco IOS to forward packets destined for obscure subnets of directly connected networks onto the best 1. Static routes : Configured by the administrator manually. Syntax : ip route <ip-addr><mask-addr><ip-addr> route, use "ip classless" command. Ex: R1(config)#ip route 192.168.200.0 255.255.255.0 192.168.1.2 2. Default routes : This is used when a route is not known or is infeasible. Syntax : ip route 0.0.0.0 0.0.0.0 <ip-addr> Ex: R1(config)#ip route 0.0.0.0 0.0.0.0 192.168.1.2 3. Dynamic routes : In dynamic routing, the routing tables are automatically updated. By default, Cisco routers support 5 simultaneous telnet sessions. Dynamic routing uses broadcasts and multicasts to communicate with other routers. This number can be configured using IOS commands. Copyright © 2014 SimulationExams.com * All trademarks are duly recognized * Best printed in landscape mode **CCNA Network Simulator CCNA Exam Simulator CCENT Exam Simulator CCNA ICND2 Exam Simulator CCNP BSCI Exam Simulator**

YOUR WAY TO CERTIFICATION SUCCESS

Cisco[™] CCNA : Password Recovery

CCNA Network Simulator CC


CCNA Exam Simulator

CCENT Exam Simulator CCNA

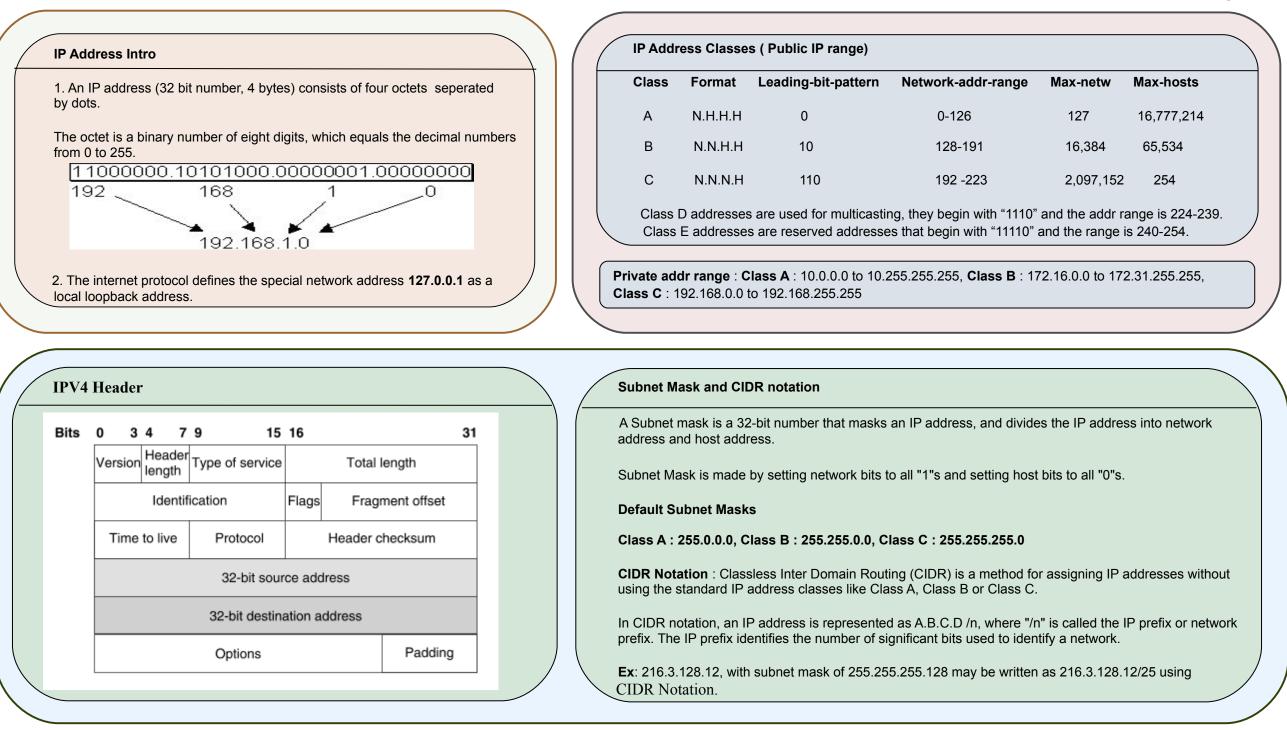
CCNA ICND2 Exam Simulator

YOUR WAY TO CERTIFICATION SUCCESS

Cisco™ CCNA : IPv4 Addressing

Copyright © 2014 SimulationExams.com

CCNA Network Simulator


CCNA Exam Simulator CC

CCENT Exam Simulator CCNA ICND2 Exam Simulator

* All trademarks are duly recognized * Best printed in landscape mode CCNP BSCI Exam Simulator

YOUR WAY TO CERTIFICATION SUCCESS

Cisco™ CCNA : IPv4 Addressing

Copyright © 2014 SimulationExams.com

CCNA Network Simulator CCN

CCNA Exam Simulator

CCENT Exam Simulator

CCNA ICND2 Exam Simulator

TM SimulationExams

YOUR WAY TO CERTIFICATION SUCCESS

Cisco[™] CCNA : IPv6 Addressina

IPv6 : Points to Remember

- 1. IPv6 address is **128** bits in length represented in hexadecimal
- 2. IPv6 Loopback address is 0:0:0:0:0:0:0:1, also expressed as ::1.
- 4. Three transition strategies for migration from ipv6 to ipv4 are dual stacking, 6-to-4 tunneling and NAT-PT

IPv6 Addressing

IPv6 address consists of 8 groups of four hexadecimal digits separated by colons and which mainly consists of 3 segments called Global Prefix which is of 48 bits, subnet part with 16 bits and Interface ID called as Host part with 64 bits.

The first 3 octets constitute Global Prefix, the fourth octet constitute subnet part and the last four form the Interface ID.

> 2001:0db8:3c4d:0015:0000:0000:1a2f:1a2b Site Subnet Interface Prefix ID ID

Rules : a) One set of 0's in the address can be replaced by :: but this can be done only once b) One or any number of consecutive groups of 0 value can be replaced with two colons (::)

IPv6 Header

Traffic Class Flow Label Version

Payload Length Next Header Hop Limit

Source Address

Destination Address

Version (4 bits) : IP version number (6)

Traffic Class (8 bits) : Used for QoS

Flow Label (20 bits) : Used for packet labelling

Payload Length (16 bits) : Length of the IPv6 payload

Next Header (8 bits) : Identifies the type of header following the IPv6 header

Hop Limit (8 bits) : Number of hops until the packet gets discarded.

Source Address (128 bits) : Source IP address

Destination Address (128 bits) : Destination IP address

EUI-64 Format

MAC to EUI-64 conversion inserts hex "FFFE" in the middle of a MAC addr. Then flips

the U/L bit to 1, in order to create a 64-bit interface ID from a 48-bit Mac address.

MAC Address 00B0 4A5C F038 Step 1 Insert 111111111111111110 EUI-64 Identifier 00B0 4A FFFE 5C F038

64 bits

0 2 B0 4A FFFE 5C F038

Copyright © 2014 SimulationExams.com

Step 2

Flip 7th Bit

IPv6 Interface ID


IPv6 Communication Types

Unicast : used for one-to-one communication. There are 3 types of unicast addresses namely global, unique-local and link-local

Multicast : used for one-to-many communication IPv6 multicast address begins with "FF"

Anycast : used for one-to-one-of-many communication

IPv6 Address Scopes

* All trademarks are duly recognized * Best printed in landscape mode **CCNP BSCI Exam Simulator**

CCNA Network Simulator

CCNA Exam Simulator

CCENT Exam Simulator CCNA ICND2 Exam Simulator

YOUR WAY TO CERTIFICATION SUCCESS

Cisco[™] CCNA : Subnetting

Requirement for IPv4 Subnetting		Subnetting Scenarios	
. Efficient use of available IP address space . Network traffic isolation		The subnetting scenarios may broad	
. Improved security		 Optimize for a given number of ho Optimize for a given number of su 	
. Limiting broadcast messages		Finally, determine the host address r	
Subnetting Scenario Question 1			
You want X number of subnets, what is the subr	et mask ? (Assume we need 10 subnets, i.e, X=10))	
Fip : Convert X to binary, determine how many I decimal value.	ow order bits need to make the number, that many	bits is number of high order bits that r	make up your subnet mask, convert high order bits to
Solution :			
Consider the Class C address – N.N.N.H.wh	ere N is the Network portion and H is the host port	tion Host Portion is as shown>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	ere in is the network portion and this the host port		128 64 32 16 8 4 2 1
	1 0	1 0	High order bit Low order bit
Step 1: Convert 10 to binary. Binary equivale	ent of 10 is as shown> 2 ³ 2 ² 2	2 ¹ 2 ⁰	
Step 2: Number of low order bits required to	make the number is 4 (from the figure shown above	ve)	
Step 3: Therefore 4 high-order bits make up	the subnet mask, i.e, 128, 64, 32, 16		
	.e. 128+64+32+16=240 (11110000). The subnet m	nask is 255 255 255 255 240	
-			
255.255.255.240 is represented as>	11111111.11111111.1111111.1		
	Network portion (28 bits)	host portion (4 bits)	
	retwork portion (20 ons)	nost por tion (4 ons)	

Copyright © 2014 SimulationExams.com

* All trademarks are duly recognized * Best printed in landscape mode <u>CCNP BSCI Exam Simulator</u>

<u>CCNA Network Simulator</u> <u>CCNA Exam Simulator</u> <u>CCENT Exam Simulator</u>

ulator CCNA ICND2 Exam Simulator

YOUR WAY TO CERTIFICATION SUCCESS

Cisco[™] CCNA : Subnetting

Subnetting Scenario Question 3

Solution :

Determine the range of valid IP Addresses for an X subnet mask ? (Assume X value to be 240 in this case)

Tip : Convert X to binary and determine the decimal value of lowest high order bit, start the range of addresses at that value, and increment the range by that value.

	1	1	1	1	0	0	0	0
>	27	26	25	24	2 ³	2^{2}	2^{1}	20

Step 1: Convert 240 to binary. Binary equivalent of 240 is as shown ----->

Step 2: The decimal value of lowest high order bit is 16 (2⁴) as seen from the figure above. Therefore, this number becomes the increment value to determine the IP address ranges.

Subnet Mask: 255.255.255.240Subnet Bits: 28Number of Subnets: 16

Host Bits: 4 Hosts per Subnet: 14

The range of addresses for the given mask is as shown ----->

Network Addresses	Host Addresses IP Range	Broadcast Address
.0	.114	.15
.16	.1730	.31
.32	.3346	.47
.48	.4962	.63
.64	.6578	.79
.80	.8194	.95
.96	.97110	.111
.112	.113126	.127
.128	.129142	.143
.144	.145158	.159
.160	.161174	.175
.176	.177190	.191
.192	.193206	.207
.208	.209222	.223
.224	.225238	.239
.240	.241254	.255

Note: All zeros and all ones host addresses cannot be used.

Copyright © 2014 SimulationExams.com

CCNA Network Simulator

CCNA Exam Simulator

CCENT Exam Simulator

CCNA ICND2 Exam Simulator

YOUR WAY TO CERTIFICATION SUCCESS

Cisco[™] CCNA : Subnetting

Subnetting Scenario Question 2

How many subnet bits are required for X number of hosts ? (Assume X value to be 5 in this case)

Tip : Convert X (for the subnets) to binary, determine the number of bits needed for the host portion, additionally determine the subnet mask from the remaining bits, using formula 2ⁿ, find the relevant number of subnets in this scenario.

Solution :
Step 1: Consider the Class C address N.N.N.H, where H is the host portion whose binary and decimal representation is as shown> $\frac{0}{2^7}$ $\frac{0}{2^6}$ $\frac{0}{2^5}$ $\frac{0}{2^4}$ $\frac{0}{2^3}$ $\frac{0}{2^2}$ $\frac{0}{2^1}$ $\frac{0}{2^0}$
Convert 5 to binary. Binary equivalent of 5 is as shown> $ \begin{array}{c c c c c c c c c c c c c c c c c c c $
Step 2: As shown in the figure above, the number of bits needed for the host portion are 3. Therefore, 2 ^{bits} -2=2 ₃ -2=6 (6>5)
3 bits are required for the host portion for 5 hosts.
Step 3 (Additional): To know the subnet mask , add the decimal value of the remaining 5 bits i.e, (128+64+32+16+8) = 248
Subnet Mask is 255.255.255.248 (11111111111111111111111111000)
Number of subnet bits: 29, here 5 bits are used from the host portion of our subnet mask
Therefore number of subnets required is (2n), where 'n' is the number of bits being used from the host portion of our subnet mask i.e. 5
Therefore, 25=32 is the number of subnets

Copyright © 2014 SimulationExams.com

CCNA Network Simulator

CCNA Exam Simulator CCENT Exam Simulator

CCNA ICND2 Exam Simulator

YOUR WAY TO CERTIFICATION SUCCESS

EIGRP (Enhanced Interior Gateway Protocol)

Important terms used in EIGRP

Successor: A route (or routes) selected as the primary route(s) used to transport packets to reach destination. Note that successor entries are kept in the routing table of the router.

Feasible successor: A route (or routes) selected as backup route(s) used to transport packets to reach destination. Note that feasible successor entries are kept in the topology table of a router.

DUAL (Diffusing Update Algorithm): Enhanced IGRP uses DUAL algorithm to calculate the best route to a destination

Routing metrics used by IGRP

Bandwidth: This is represents the maximum throughput of a link.

MTU (Maximum Transmission Unit): This is the maximum message length that is acceptable to all links on the path. The larger MTU means faster transmission of packets.

Reliability: This is a measurement of reliability of a network link. It is assigned by the administrator or can be calculated by using protocol statistics.

Delay: This is affected by the band width and queuing delay.

Load: Load is based among many things, CPU usage, packets processed per sec

Important Command in EIGRP

- 1. **Show ip eigrp topology** : To display entries in the EIGRP topology table, use the show ip eigrp topology command in EXEC mode.
- 2. **show ip eigrp neighbours** : To display the neighbors discovered by EIGRP, use the show ip eigrp neighbors command in EXEC mode. It shows when neighbors become active and inactive. The neighbor parameters displayed include Address, Interface, Holdtime, Uptime, Q, Seq Num, SRTT, and RTO.
- 3. **show ip route eigrp** : Displays the EIGRP routes installed in the route table.
- 4. Show ip eigrp interface: Use the show ip eigrp interfaces command to determine on which interfaces EIGRP is active, and to find out information about EIGRP relating to those interfaces. The details shown include interfaces on which EIGRP is configured, numbered of directly connected EIGRP neighbours on each interface, Mean SRTT, etc.

Important Features of EIGRP

- 1. Unlike RIP and IGRP, EIGRP updates are not periodic. EIGRP updates are sent only when there is a topological change in the network.
- 2. In EIGRP, the router doing the summarization will build a route to null0 for the summarized address. This ensures that the packets that are not destined for any network are routed to null and thus dropped.
- 3. EIGRP provides the option of disabling route summarization. The command no auto-summary can be used for this purpose. This option is not available in RIP and IGRP.
- 4. You can summarize routes in EIGRP at any arbitrary bit boundary

Copyright © 2014 SimulationExams.com

CCNA Network Simulator

CCNA Exam Simulator

CCENT Exam Simulator CCNA ICND2 Ex

CCNA ICND2 Exam Simulator

Cisco[™] CCNA : EIGRP

SimulationExams[™]

YOUR WAY TO CERTIFICATION SUCCESS

Packet types used by EIGRP when communicating with its neighboring EIGRP routers

- 1. **Hello Packets** EIGRP sends Hello packets once it has been enabled on a router for a network. These messages are used to identify neighbors and once identified, serve or function as a keep alive mechanism between neighbors. EIGRP Hello packets are sent to the link local Multicast group address 224.0.0.10.Hello packets sent by EIGRP do not require an Acknowledgment to be sent confirming that they were received.
- 2. Acknowledgment Packets An EIGRP Acknowledgment (ACK) packet is simply an EIGRP Hello packet that contains no data. Acknowledgment packets are used by EIGRP to confirm reliable delivery of EIGRP packets. ACKs are always sent to a Unicast address, which is the source address of the sender.
- 3. Update Packets EIGRP Update packets are used to convey reachability of destinations. Update packets contain EIGRP routing updates. When a new neighbor is discovered, Update packets are sent via Unicast to the neighbor which the can build up its EIGRP Topology Table. It is important to know that Update packets are always transmitted reliably and always require explicit Acknowledgment.
- 4. **Query Packet** EIGRP Query packets are Multicast and are used to reliably request routing information. EIGRP Query packets are sent to neighbors when a route is not available and the router needs to ask about the status of the route for fast convergence. If the router that sends out a Query does not receive a response from any of its neighbors, it resends the Query as a Unicast packet to the non-responsive neighbor(s). If no response is received in 16 attempts, the EIGRP neighbor relationship is reset.
- Reply Packets EIGRP Reply packets are sent in response to Query packets. The Reply packets are used to reliably respond to a Query packet. Reply packets are Unicast to the originator of the Query.
- Request Packets Request packets are used to get specific information from one or more neighbors and are used in route server applications. These packet types can be sent either via Multicast or Unicast, but are always transmitted unreliably.

Different Tables Used by EIGRP

- 1. **Neighbor table**: The neighbor table stores information about neighboring EIGRP routers: a. Network address (IP)
 - b. Connected interface
 - c. Holdtime how long the router will wait to receive another HELLO before dropping the neighbor; default = 3 * hello timer
 - d. Uptime how long the neighborship has been established
 - e. Sequence numbers
 - f. Retransmission Timeout (RTO) how long the router will wait for an ack before retransmitting the packet; calculated by SRTT
 - g. Smooth Round Trip Time (SRTT) time it takes for an ack to be received once a packet has been transmitted
 - h. Queue count number of packets waiting in queue; a high count indicates line congestion
- 2. Topology table: It contains only the aggregation of the routing tables gathered from all directly connected neighbors (not the entire network!). This table contains a list of destination networks in the EIGRP- routed network together with their respective metrics. Also for every destination, a successor and a feasible successor are identified and stored in the table if they exist. Every destination in the topology table can be marked either as "Passive", which is the state when the routing has stabilized and the router knows the route to the destination, or "Active" when the topology has changed and the router is in the process of (actively) updating its route to that destination.
- 3. Routing table: Stores the actual routes to all destinations; the routing table is populated from the topology table with every destination network that has its successor and optionally feasible successor identified (if unequal-cost load-balancing is enabled using the variance command) The successors and feasible successors serve as the next hop routers for these destinations.

Copyright © 2014 SimulationExams.com

CCNA Network Simulator

CCNA Exam Simulator CCENT Exam Simulator

r CCNA ICND2 Exam Simulator

YOUR WAY TO CERTIFICATION SUCCESS

Cisco[™] CCNA : OSPF

/	OSPF and OSPF Area	OSPF router ID determination	OSPF Priority
	OSPF is a link state technology that uses Dijkstra algorithm to compute routing information. An OSPF area is a collection of networks and routers that have the same area identification.OSPF process identifier is locally significant.	 Use the address configured by the ospf router-id command Use the highest numbered IP address of a loopback interface Use the highest IP address of any physical interface If no interface exists, set the router-ID to 0.0.0 	The ip ospf priority command is used to set manually which router becomes the DR. The range is 0- 255 and the default is 1. 0 means it will never be DR or BDR.

DR and BDR Election

When two or more routers are contending to be a DR (designated Router) on a network segment, the router with the highest OSPF priority will become the DR for that segment. The same process is repeated for the BDR. In case of a tie, the router with the highest RID will win.

OSPF Area Types

Standard Area : Default OSPF area type

Stub Area : External link (type 5) LSAs are replaced with a default route

Totally Stubby Area : Type 3, 4, and 5 LSAs are replaced with a default route

Not So Stubby Area (NSSA) : A stub area containing an ASBR; type 5 LSAs are converted to type 7 within the area

Router Types

Internal Router : All interfaces reside within the same area

Backbone Router : A router with an interface in area 0 (the backbone)

Area Border Router (ABR) : Connects two or more areas

AS Boundary Router (ASBR) : Connects to additional routing domains; typically located in the backbone

Copyright © 2014 <u>SimulationExams.com</u> * All trademarks are duly recognized * Best printed in landscape mode <u>CCNA Network Simulator</u> <u>CCNA Exam Simulator</u> <u>CCENT Exam Simulator</u> <u>CCNA ICND2 Exam Simulator</u> <u>CCNP BSCI Exam Simulator</u>

YOUR WAY TO CERTIFICATION SUCCESS

Cisco™ CCNA : OSPF

OSPF LSA Types

- a. LSA 1 (Router LSA): Generated by all routers in an areato describe their directly attached links (Intra-area routes). These do not leave the area.
- b. LSA 2 (Network LSA): Generated by the DR of a broadcast or Nonbroadcast segment to describe the neighbors connected to the segment. These do not leave the area.
- c. LSA 3 (Summary LSA): Generated by the ABR to describe a route to neighbors outside the area(Inter-area routes).
- d. LSA 4 (Summary LSA): Generated by the ABR to describe a route to an ASBR to neighbors outside the area.
- e. LSA 5 (External LSA): Generated by ASBR to describe routes redistributed into the area. These routes appear as E1 or E2 in the routing table. E2 (default) uses a static cost Throughout the OSPF domain as it only takes the cost into account that is reported at redistribution. E1 uses a cumulative cost of the cost reported into the OSPF domain at Redistribution plus the local cost to the ASBR.
- f. LSA 6 (Multicast LSA): Not supported on Cisco routers.
- g. LSA 7 (NSSA External LSA): Generated by an ASBR inside a NSSA to describe routes redistributed into the NSSA. LSA 7 is translated into LSA 5 as it leaves the NSSA. These routes appear as N1 or N2 in the ip routing table inside the NSSA. Much like LSA 5 N2 is a static cost while N1 is a cumulative cost that includes the cost up to the ASBR.

LSAs used by different OSPF Areas

- a. Area backbone LSAs: The LSAs generated by Area Backbone Routers are LSA1, LSA2, LSA3, LSA4, and LSA5. Note that LSA6 is not supported by Cisco, and LSA7 is generated by NSSA router.
- b. Stub area LSAs: The Stub area router generates LSA types 1, 2, and 3. i.e. Router LSA, Network LSA, and Summary LSA.
- c. Totally Stubby LSAs: The Totally Stubby area routers generate LSA types 1 and 2 NSSA LSAs: A NSSA (Not So Stubby Area) router generates LSA types 1, 2, and 7 LSA 7 is translated into LSA 5 as it leaves the NSSA

Important Features of Stub Area

- 1. A stub area reduces the size of the link-state database to be maintained in an area, which in turn result in less overhead in terms of memory capacity, computational power, and convergence time.
- 2. The routing in Stub and totally Stubby areas is based on default gateway. A default route (0.0.0.0) needs to be configured to route traffic outside the area.
- 3. The stub areas suited for Hub-Spoke topology.
- 4. Area 0 is not configured as Stubby or totally Stubby. This is because stub areas are configured mainly to avoid carrying external routes, whereas Area 0 carries external routes.

External Routes

The cost of external route depends on the configuration of ASBR. There are two external packet types possible.

- 1. Type 1 (E1) Here the metric is calculated by adding the external cost to the internal cost of each link that the packet crosses.
- 2. Type 2 (E2) This type of packet will only have the external cost assigned, irrespective of where in the area it crosses. Type 2 packets are preferred over Type1packets unless there are two same cost routes existing to the destination.

Default Route Advertisement in OSPF

A default route can be advertised into OSPF domain by an ASBR router in one of two ways:

1.By using "default-information originate" command: This command can be used when there is a default route(0.0.0.0/0) already existing. This command will advertise a default route into OSPF domain.

2. By using "default-information originate always" command: This command can be used when there is a default route (0.0.0.0/0) is present or not. This command is particularly useful when the default route is not consistent. An inconsistent default route may result in flippingof the route advertised into the OSPF domain, resulting in instability of the OSPF domain routing information. Therefore, it is recommended to use "always" keyword.

Copyright © 2014 SimulationExams.com

CCNA Network Simulator

CCNA Exam Simulator

CCENT Exam Simulator CCNA

CCNA ICND2 Exam Simulator

YOUR WAY TO CERTIFICATION SUCCESS

Cisco™ CCNA : NAT

Static NAT

Maps an unregistered IP address to registered IP (globally unique) addresses on one-to-one basis.

The command, **ip nat inside source static <local ip> <global ip>** configures address translation for static NAT.

Dynamic NAT

Maps an unregistered IP address to a registered (globally unique) IP address from a group of registered (globally unique) IP addresses.

The command, ip nat inside source list <access-list-number> pool <name>

is used to map the access-list to the IP NAT pool during the configuration of Dynamic NAT.

Overloading

A special case of dynamic NAT that maps multiple unregistered IP addresses to a single registered (globally unique) IP address by using different port numbers.

Dynamic NAT with overloading is also known also as PAT (Port Address Translation).

Overlapping

This occurs when your internal IP addresses belong to global IP address range that belong to another network.

Defining an IP NAT Pool

1. Defining an IP NAT pool for the inside network using the command:

ip nat pool <pool-name> <start-ip> <end-ip> {netmask <net-mask> | prefix-length <prefix-length>} [typerotary] *Ex: ip nat pool pool1 200.200.200.3 200.200.4 netmask 255.255.255.0*

Note that type-rotary is optional command. It indicates that the IP address range in the address pool identifies hosts among which TCP load is distributed.

2. Mapping the access-list to the IP NAT pool by using the command:

ip nat inside source list <access-list-number> pool <pool-name> Ex: ip nat inside source list 1 pool pool1

Address (Classification
-----------	----------------

Inside Local : An actual address assigned to an inside host

Inside Global : An inside address seen from the outside

Outside Global : An actual address assigned to an outside host

Outside Local : An outside address seen from the inside

NAT Pool : A pool of IP addresses to be used as inside global or outside local addresses in translations

Configuring NAT

When configuring NAT, NAT should be enabled on at least one inside and one outside interface.

1. The command for enabling NAT on inside interface is: **R1(config-if)#ip nat inside**

2. The command for enabling NAT on the outside interface is:

R1(config-if)#ip nat outside

Remember to enter into appropriate configuration modes before entering the commands.

Usually, the inside NAT will be configured on an Ethernet interface, whereas the outside NAT is configured on a serial interface.

Copyright © 2014 SimulationExams.com

CCNA Network Simulator CC

CCNA Exam Simulator CCENT Exam Simulator

CCNA ICND2 Exam Simulator

YOUR WAY TO CERTIFICATION SUCCESS

Cisco[™] CCNA : Access-Lists

Access Lists

IP access lists are a sequential list of permit and deny conditions that apply to IP addresses or upper layer protocols. Access Control Lists are used in routers to identify and control traffic.

Purpose of Access Lists

Controlling traffic through a router, and
 Controlling VTY access to a router's VTY ports

- 3. Filter incoming and outgoing packets
- 4. Restrict contents of routing updates
- 5. Trigger dial-on-demand routing (DDR) calls

Types of IP Access Lists

Standard IP Access Lists Extended IP Access Lists Named Access Lists

Wild Card Masking

Wild card masking is used to permit or deny a group of addresses. For example, if we have a source address 185.54.13.2 and want all the hosts on the last octet to be considered, we use a wild card mask, 185.54.13.255.

The 32 bit wildcard mask consists of 1's and 0's

1 = ignore this bit 0 = check this bit

Special Case: Host 185.54.13.2 is same as 185.54.13.2 with a wild card mask of 0.0.0.0, considers only specified IP. Any is equivalent to saying 0.0.0.0 with a wild card mask of 255.255.255.255. This means none of the bits really matter. All IP addresses need to be considered for meeting the criteria.

Standard Access List

1. These have the format, access-list [number] [permit or deny] [source_address] Ex: access-list 1 permit 192.168.2.0 0.0.0.255

2. Place standard access lists as near the destination as possible and extended access lists as close to the source as possible.

3. Access lists have an implicit deny at the end of them automatically. Because of this, an access list should have at least one permit statement in it; otherwise the access list will block all remaining traffic.

4. Access lists applied to interfaces default to outbound if no direction is specified.

Extended Access Lists and Named Access Lists

Extended Access lists have the format,

access-list {number}{permit or deny} {protocol} {source-wildcard [operator [*port*]]{destination} destination-wildcard [operator [*port*]] With extended IP access lists, we can act on any of the following:

- Source address - Port information (WWW, DNS, FTP, etc.)

- Destination address
- IP protocol (TCP, ICMP, UDP, etc.)

Ex: access-list 101 permit icmp host 192.168.3.2 any

Named Access lists have the format, **ip access-list {standard /extended} name Ex:** ip access-list extended denyping

Permitted numbers for access-lists

1-99: IP standard access list 1000-1099: IPX SAP access list 100-199: IP extended access list 1100-1199: Extended 48-bit MAC address access list 800-899: IPX standard access list 900-999: IPX extended access list

* All trademarks are duly recognized * Best printed in landscape mode CCNP BSCI Exam Simulator

CCNA Network Simulator CC

CCNA Exam Simulator

CCENT Exam Simulator

CCNA ICND2 Exam Simulator

12 SimulationExams

YOUR WAY TO CERTIFICATION SUCCESS

Cisco[™] CCNA : VLANs and VTP

VLANs – Points to Remember

- 1. VLAN 1 is the management VLAN.
- 2. Static VLAN : VLAN is statically assigned to the physical port and never changes.
- 3. Dynamic VLAN : VMPS automatically assigns VLAN based on MAC
- 4. Access Link : An access link can carry only one VLAN (used between host and switch port) 5. Trunk Link : A trunk link can carry multiple VLANs. Used to connect to other switches,
- routers, or servers
- 6. Two types of Trunk framing: ISL (Cisco only) and 802.1.g
- 7. Trunk links can carry 1 to 1005 VLANs
- 8. Switchport modes are trunk, dynamic desirable, dynamic auto, access.

VTP – Points to Remember

- 1. VTP is a Layer 2 messaging protocol. It carries configuration information throughout a single domain
- 2. VTP Modes are

Server : Create, modify, or delete VLANs (This is the deafult vtp mode on a switch) Client : Can't create, change, or delete VLANs

Transparent: Used when a switch is not required to participate in VTP, but only pass the information to other switches

- 3. VTP domain is common to all switches participating in VTP
- 4. Pruning is a technique where in VLANs not having any access ports on an end switch are removed from the trunk to reduce flooded traffic
- 5. Configuration revision number is a 32-bit number that indicates the level of revision for a VTP packet. Each time the VTP device undergoes a VLAN change, the config revision is incremented by one.

VLAN configuration

Creating VLANs

SW1#vlan database SW1(vlan)#vlan 10 name firstvlan SW1(vlan)#vlan 20 name secondvlan

Access Port configuration

SW1(config-if)#switchport mode access SW1(config-if)#switchport access vlan 10 SW1(config-if)#switchport access vlan 20

Access port config to a range of interfaces

SW1(config)#interface range fa 0/2 - 5 SW1(config-if)#switchport access vlan 10 SW1(config)#interface range fa 0/6 - 10 SW1(config-if)#switchport access vlan 20

Trunk Port configuration

SW1(config-if)#switchport mode trunk SW1(config-if)#switchport trunk encapsulation dot1g

VTP Configuration

SW1#vlan database SW1(vlan)#vtp mode (Server/Client/Transparent) SW1(vlan)#vtp domain <name> SW1(vlan)#vtp password <password> SW1(vlan)#vtp pruning

Troubleshooting commands

- 1. show vlan
- 2. show vlan-membership
- 3. show vtp status
- 4. show interfaces trunk
- 5. show interface <interface-name> switchport

Copyright © 2014 SimulationExams.com

CCNA Network Simulator

CCNA Exam Simulator

CCENT Exam Simulator CCNA ICND2 Exam Simulator

* All trademarks are duly recognized * Best printed in landscape mode **CCNP BSCI Exam Simulator**

YOUR WAY TO CERTIFICATION SUCCESS

Cisco™ CCNA : EtherChannel

EtherChannel

EtherChannel is a port link aggregation technology used primarily on Cisco networking devices. It allows grouping of several physical Ethernet links to create one logical Ethernet link for the purpose of providing fault-tolerance and high-speed links between switches, routers and servers.

Features of EtherChannel that is running PagP

- 1. PAgP helps in the automatic creation of Fast EtherChannel.
- PAgP does not group ports configured for dynamic VLANs. PagP requires that all ports in a channel must belong to the same VLAN or should be configured as trunk ports.
- 3. PAgP does not group ports that work at different speeds or port duplexes.
- 4. The load distribution algorithm in EtherChannel can use source IP, destination IP, a combination of source and destination IPs, Source MAC, destination MAC, or TCP.UDP port numbers for decision process. If there are only two links in the EtherChannel, only 1 bit in the IP are required. If there are 4 links in the EtherChannel, 2 bits are required.An XOR on 2 bits can have 4 possible outcomes. Similarly,for an 8 link EtherChannel, 3 bits are required.Conventionally, rightmost bits are always used for XOR operation.

Important Features of Bundled Ports Using EtherChannel

- EtherChannel can support from two to 8 links to be bundled into one logical link. Therefore, if Gigabit Ethernet links are bundled, 8 links represents 8 Gbps of one-way bandwidth, and 16 Gbps for full-duplex operation.
- 2. The bundled ports must have identical Spanning Tree settings
- 3. The bundled ports must have the same speed, duplex, and Ethernet media.
- 4. The bundled ports must belong to the same VLAN if not used as VLAN trunk.
- 5. If the bundled ports represent a VLAN trunk, then they must have same native VLAN, and each port should have same set of VLANs in the trunk.
- 6. The EtherChannel also provides link redundancy. If one of the bundled links fail, the traffic through the failed link is distributed to other working links in the channel. The failover is transparent to the end user. Similarly traffic again flows through the restored link, as and when a link is restored.
- Note that the load balancing can be done based on source IP, destination IP, both source and destination IP (XOR), source and destination MAC addresses or TCP/UDP port numbers.

PagP (Short for Port Aggregation Protocol)

PagP helps in the automatic creation of Fast EtherChannel links. PagP is protocol is Cisco proprietary link aggregation protocol used in Cisco switches routers, and servers.

LACP (Short for Link Aggregation Control Protocol)

LACP is different from PAgP. LACP is a standards based protocol and conforms to IEEE standard 802.3ad, whereas PAgP is a Cisco proprietary protocol.

PAgP modes and the corresponding action

- 1. ON mode does not send or receive PAgP packets. Therefore, both ends should be set to ON mode toform an EtherChannel.
- 2. Desirable mode tries to ask the other end in order to bring up the EtherChannel.
- 3. Auto mode participates in the EtherChannel only if the for end asks for participation. Two switches in auto mode will not form an EtherChannel.

 Important Commands

 1. switch# show etherchannel port

 Used for verifying the channel negotiation mode of an EtherChannel.

 2. Switch# show etherchannel summary

 Shows each port in the channel along with the status flag.

 3. Switch(config)# port-channel load-balance src-ip

 Will configure load balancing on EtherChannel switch links using source IP address.

Copyright © 2014 SimulationExams.com

* All trademarks are duly recognized * Best printed in landscape mode CCNP BSCI Exam Simulator

CCNA Network Simulator

CCNA Exam Simulator

CCENT Exam Simulator CCNA ICND2 Exam Simulator

YOUR WAY TO CERTIFICATION SUCCESS

Cisco[™]CCNA : Spanning Tree Protocol

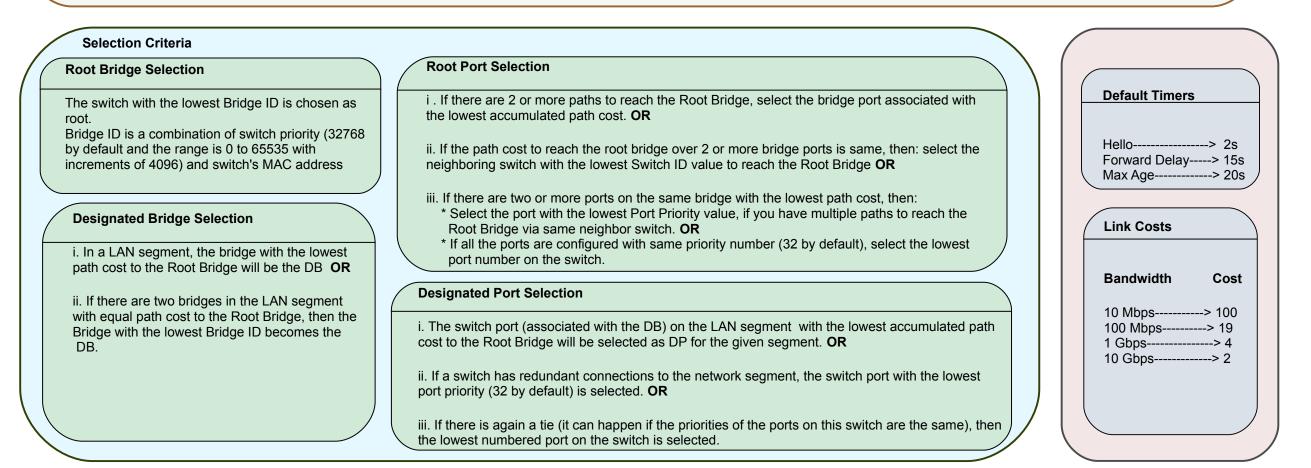
STP – Points to Remember

1. STP is a layer 2 protocol that runs on switches and bridges, the purpose of STP is to remove switching loops. By default, STP is enabled on cisco switches.

2. All switches participating in STP exchange info with other switches in the network

Through messages known as **BPDUs** (Sent out at a frequency of 2 sec on every port)

3. STP port states are Blocked, Listen, Learn, Forward, Disabled


- 4. The command "show spanning-tree" includes the following info
 - i. VLAN number
 - ii. Root bridge priority, MAC address
 - iii. Bridge timers (Max Age, Hello Time, Forward Delay)

STP Port Roles

1. **Root** : A bridge can have only one root port. The root port is the port that leads to the root bridge. All bridges except the root bridge will have a root port. the root port is in the STP forwarding state.

2. **Designated** : One designated port is elected per link (segment). The designated port is the port closest to the root bridge. Each designated port is in the STP forwarding state 3. **Alternate** : Alternate ports lead to the root bridge, but are not root ports. The alternate ports maintain the STP blocking state.

4. **Backup**: This is a special case when two or more ports of the same bridge (switch) are connected together, directly or through shared media. In this case, one port is designated, and the remaining ports block. The role for this port is backup.

Copyright © 2014 SimulationExams.com

CCNA Network Simulator

CCNA Exam Simulator

CCENT Exam Simulator

CCNA ICND2 Exam Simulator

* All trademarks are duly recognized * Best printed in landscape mode CCNP BSCI Exam Simulator

YOUR WAY TO CERTIFICATION SUCCESS

Cisco[™]CCNA : Spanning Tree Protocol

Spanning Tree Port States

The ports on a switch with enabled Spanning Tree Protocol (STP) are in one of the following five port states.

1. Blocking 2. Listening 3. Learning 4. Forwarding 5. Disabled

A switch does not enter any of these port states immediately except the blocking state. When the Spanning Tree Protocol (STP) is enabled, every switch in the network starts in the blocking state and later changes to the listening and learning states.

Blocking - During blocking state, the port is listening to and processing BPDUs After 20 seconds, the switch port changes from the blocking state to the listening state.

Listening - After blocking, a root port or a designated port will move to a listening state. During the listening state the port discards frames received from the attached network segment it also discards frames switched from other ports for forwarding. At this state, the port receives BPDUs from the network segment and directs them to the switch system module for processing. After 15 seconds, the switch port moves from the listening state to the learning state.

Learning - A port moves into the learning state after the listening state. During the learning state, the port is listening for and processing BPDUs. In the listening state, the port starts to process user frames and starts updating the MAC address table. Userframes are not forwarded to the destination. After 15 seconds, the switch port moves from learning to forwarding.

Forwarding - Once in the forwarding state the port sends traffic. In a forwarding state, the port will process BPDUs, update its MAC Address table with frames that it receives, and forward user traffic through the port Forwarding State is the normal operational state.

Disabled - A port in the disabled state does not participate in frame forwarding and is considered non-operational

Protection against sudden loss of BPDUs

1.BPDU Skew Detection 2.Root Guard 3.BPDU Guard 4.UDLD 5.Loop Guard

 <u>Root Guard</u> - When configured at the interface level, BPDU Guard shuts the port down as soon as the port receives a superior BPDU. To enable root guard, use the command: switch(config-if)# spanning-tree guard root

If the superior BPDUs are no more received, the port is restarts the normal STP states to return to normal use.

 <u>BPDU Guard</u> - Here if any BPDU (superior or not) is received on a port configured with BPDU guard, the port is immediately put into errdisable state. The port is effectively shutdown. To enable BPDU guard use the command at interface configuration mode: switch(config-if)# spanning-tree bpduguard enable

A port that is shutdown will continue to be in errdisable state even if the BPDUs are no longer received. It is recommended to use bpdu guard on all ports that have portfast enabled. The protection is useful for access layer nodes where the end user computers are expected to be Connected.

- <u>BPDU Skew Detection</u> -It measures the amount of time that elapses from the expected time of arrival of a BDPU to the actual time of arrival of the BDPU. The arrival skew time condition is reported via syslog messages.
- 4. Loop Guard The loop guard is intended to provide additional protection against L2 forwarding Loops (STP loops). For example, an STP loop is created when a blocking port in a redundant topology erroneously transitions to forwarding state. The loop guard needs to be enabled on the non-designated ports to effectively prevent STP loops. Non-designated ports are the root port, alternate root ports, and ports that are normally blocking. The command used to enable loop guard is: Switch(config-if)# spanning-tree guard loop

The command is used at port level, loop guard is disabled by default on all switch ports.

5. <u>Unidirectional Link Detection (UDLD)</u> - The UDLD protocol allows devices connected through media such as fiber-optic or twisted-pair Ethernet to monitor the physical configuration of the cables and detect when a unidirectional link exists. If a unidirectional link is detected, UDLD shuts down the affected port and send out an alert.

Spanning Tree Protocols

- a. Rapid Spanning Tree Protocol (RSTP) is based on the IEEE standard 802.1w. The standard has evolved from its predecessor 802.1D. 802.1w has the advantage of faster convergence over 802.1D.RSTP defines port states according to what the port does with the incoming frames. The allowed port states are as given below:
- 1. **Discarding**: The incoming frames are discarded. No MAC addresses are learned.
- 2. Learning: The incoming frames are dropped, but MAC addresses are learned.
- 3. Forwarding: The incoming frames are forwarded according to the learned MAC addresses.

b. PVST (Per VLAN Spanning Tree) implementation has one instance of STP running for each VLAN. Therefore, whe there are 32 VLANs in the bridge network, there will be 32 instances of STP running. Also, each VLAN has a unique root, path cost etc. corresponding to that VLAN.

Copyright © 2014 SimulationExams.com

tor CCENT Exam Simulator C

CCNA ICND2 Exam Simulator

* All trademarks are duly recognized * Best printed in landscape mode CCNP BSCI Exam Simulator

CCNA Network Simulator CC

CCNA Exam Simulator

YOUR WAY TO CERTIFICATION SUCCESS

Cisco[™] CCNA : Router Redundancy

Router Redundancy Protocols	Important Features of HSRP
1. Hot Standby Router Protocol (HSRP): HSRP is a Cisco proprietary protocol that offers router redundancy. Here one router is elected as active router, and another router is elected as standby router. All other routers are put in listen HSRP state. HSRP messages are exchanges using multicast destination address 244.0.0.2 to keep a router aware of all others in the group.	 HSRP authentication is carried out in clear text. The hosts served by HSRP router use the IP address of virtual router as the default IP address.
 Virtual Router Redundancy Protocol (VRRP): VRRP is very similar to HSRP. VRRP is a standards based protocol and defined in RFC 2338. VRRP sends advertisements to multicast destination address 244.0.0.18 using IP protocol. 	3. When an Active router fails in HSRP environment, Standby router assumes the Active router role. This new Active router will remain as Active router even if the failed Active router comeback to service, irrespective of the priority levels.
3. Gateway Load Balancing Protocol (GLBP): GLBP overcomes some of the limitations of HSRP/VRRP. Here, instead of just one active router, all routers in the group can participate	4. The default HSRP standby priority is 100. If the standby priorities of routers participating in HSRP are same, the router with the highest IP address becomes the Active router.
 and offer load balancing. 4. Server Load Balancing (SLB): SLB provides a virtual server IP address to which client machines can connect. The virtual server, in turn, is a group of real physical servers arranged in a server farm. 	5. Within the standby group of routers, the router with the highest standby priority in the group becomes the active router. For example, a router with a priority of 100 will become active router over a router with a priority of 50. The active router forwards packets sent to the virtual router. It maintains its active state by using Hello messages.
	6. Each router in a standby group can be assigned a priority value. The range of priority values is between 0 and 255 (including 0 and 255). The default priority assigned to a router in a standby group is 100. The router with numerically higher priority value will become Active router in the HSRP standby group.
Members of HSRP Group	7. All routers in an HSRP standby group can send and/or receive HSRP message. Also, HSRP protocol packets are addressed to all-router address (224.0.0.2) with a TTL of 1. Note that the HSRP messages are encapsulated in the data portion of UDP packets.
1. Virtual router : virtual router is what is seen by the end user device. The virtual router has its own IP and MAC addresses.	 8. In HSRP, the MAC address used by virtual router is made up of the following three components: a. Vendor ID: The first three bytes of the MAC address correspond to the vendor ID.
2. Active router: Forwards packets sent to the virtual router. An active router assumes the IP and MAC addresses of the virtual router.	 b. HSRP ID: The next two bytes of the MAC address correspond to HSRP code. It is always 07.ac. Therefore, the virtual router MAC address will have 07.ac in the fourth and fifth bytes. c. Group ID: The last byte of the MAC address is the group's identification number.
3. Standby route r: Standby router monitors the state of HSRP by using Hello massages. It assumes the role of Active router, should the current Active router fail.	

Copyright © 2014 SimulationExams.com

CCNA Network Simulator

CCNA Exam Simulator CC

CCENT Exam Simulator CC

CCNA ICND2 Exam Simulator

YOUR WAY TO CERTIFICATION SUCCESS

Cisco[™] CCNA : Router Redundancy

Virtual Router Redundancy protocol (VRRP) – Important Features	HSRP - Important Commands
 VRRP will have one master router, and all other routers are in the backup state. VRRP router priorities range from 1 to 254. By default, the priority is set to 100. 254 is the highest priority. The MAC address of the virtual router is of the form 0000.5e00.01xx, where xx is the VRRP group number in the range 0 to 255 or 0 to ff hex. The interval for VRRP advertisements is 1 second by default. All VRRP routers are configured to preempt the current master router by default. The router priority should be highest for the preemption to occur. 	 RouterA# show standby Displays the HSRP router status. The command displays the router priority, state (active/standby), group Number among other things.Also, to enable HSRP debugging, used the command: RouterA# debug standby Enables HSRP debugging. To disable debugging, use the command "no debug standby" R(config-if)# standby <group-number> priority <priority-value>. Sets the router's priority in the standby group. </priority-value></group-number> standby <group-number> preempt is used to force an interface to resume Active router state. Note that the priority of the router should be high than the current Active router. </group-number>
 GLBP (Gateway Load Balancing Protocol) Load Balancing Methods 1. Round robin: Here the traffic load is distributed evenly across all routers. 2. Weighted: A higher weighting results in more ARP replies containing the virtual MAC address of the router with higher weight. 3. Host-dependent: Here each client that generates an ARP always receives the same virtual MAC. In other words, the MAC address is dependent on the host. 	 R(config-if)# standby <group-number> ip <virtual-ip-address> Configures a router as a member of an HSRP standby group. </virtual-ip-address></group-number> R(config-if)#standby 45 ip 192.32.16.5 Sets group number 45 with a virtual IP address of 192.32.16.5 Syntax: R(config-if)# standby <group-number> ip <virtual-ip-address></virtual-ip-address></group-number> R(config-if)# standby <group-number> preempt Enables the previous Active router to resume its activity as Active router by taking over the role from lower priority Active router. </group-number> standby <group-number> preempt Used to force an interface to resume Active router state. Note that the priority of the router should be higher than the current Active router. </group-number>

Copyright © 2014 SimulationExams.com

CCNA Network Simulator

CCNA Exam Simulator

or <u>CCENT Exam Simulator</u>

CCNA ICND2 Exam Simulator

YOUR WAY TO CERTIFICATION SUCCESS

Cisco[™] CCNA : Configuration Commands

	A. Setting Passwords	
SI. No.	Task	Commands
1	Configure router console password as "ciscocs"	R1(config)#line console 0 R1(config-line)#login R1(config-line)#password ciscocs
2	Configure router vty password as "ciscovty"	R1(config)#line vty 0 4 R1(config-line)#login R1(config-line)#password ciscovty
3	Configure router auxiliary password as "ciscoaux"	R1(config)#line aux 0 R1(config-line)#login R1(config-line)#password ciscoaux
4	Set the encrypted enable password as "cisco"	R1(config)#enable secret cisco
5	Set the unencrypted enable password as "ccna"	R1(config)#enable password ccna
	B. Router Copy Commands	
6	Copy the running-configuration to startup-configuration (DRAM to NVRAM)	R1#copy running-config startup-config (copy run start)
7	Copy the startup-configuration to running-configuration (NVRAM to DRAM)	R1#copy startup-config running-config (copy start run)
8	Copy the startup-configuration to a TFTP server	R1#copy startup-config tftp (copy start tftp)
9	Copy the running-configuration to a TFTP server	R1#copy running-config tftp (copy run tftp)
10	Save a backup of the IOS to a TFTP server	R1#copy flash tftp
11	Upgrade the IOS from a TFTP server	R1#copy tftp flash
	C. Routing Commands	
12	Enable RIP version1 on all 192.168.x.x interfaces	R1(config)#router rip R1(config-router)#network 192.168.0.0
13	Enable RIP version 2	R1(config)#router rip R1(config-router)#version 2
15	Enable EIGRP with an AS number of 1, to all interfaces in the network 19.168.x.x	R1(config)#router eigrp 1 R1(config-router)#network 192.168.0.0
16	Enable OSPF on any local interface which starts with IP address 10.1.x.x , note the inverted mask and area.	R1(config)#router ospf 1 R1(config-router)#network 10.1.0.0 0.0.255.255 area 0

Copyright © 2014 SimulationExams.com

CCNA Network Simulator CC

CCNA Exam Simulator

ator <u>CCENT Exam Simulator</u>

CCNA ICND2 Exam Simulator

SimulationExams

YOUR WAY TO CERTIFICATION SUCCESS

	Router Show commands				
SI. No.	Command	Explanation			
1.	show access-list	Displays all accesslists from all protocols present in a specified router.			
2.	show banner	Displays the banner set on the router.			
3.	show cdp	Shows the status of CDP such as holdtime value, no. of packets for every 60sec.			
4.	show cdp interface	It tells the CDP configuration on an interface-by-interface basis.			
5.	show cdp neighbor detail	Displays info on directly connected neighbors.			
6.	show cdp traffic	Displays the CDP traffic info.			
7.	show clock	Displays the clock (time, date).			
8.	show flash	Used to view all IOS images and file stored in flash(Default location of IOS images is in flash).			
9.	show frame-relay Imi	Shows the detailed statistics regarding LMI.			
10.	show frame-relay map	Displays the frame relay inverse ARP table.			
11.	show frame-relay pvc <dlci_num></dlci_num>	Shows all the frame relay PVC's terminated and their statistics at a specified router.			
12.	show history	Shows the previously executed commands.IOS device stores the last ten commands that are executed.			
13.	show hosts	Displays the host table.			
14.	show interfaces	To view interfaces, status, and statistics for an interface. If u don't lists a specific interface, all of the interfaces on the router are listed.			
15.	show ip eigrp neighbors	Shows the list of eigrp neighbors that a specified router has.			
16.	show ip eigrp topology	Displays the list of successor and feasible successors, as well as other types of routes.			
17.	show ip eigrp traffic	It shows the information about trafiic statistics for eigrp.			
18.	show ip interfaces	Displays status and global parameters associated with the interfaces on the router.			
19.	show ip interface brief	Displays the interface operational status and IP addresses for all router interfaces.			
20.	show ip nat statistics	Displays NAT statistics.			
21.	show ip nat translations	Displays the NAT translations.			
22.	show ip ospf	Displays general information about OSPF routing processes.			
23.	show ip ospf database	Displays lists of information related to the OSPF database for a specific router.			
24.	show ip ospf interface	If adjacent router's dont become neighbors, then use the command to check if the local router interface is configured correctly.			
25.	show ip ospf neighbor	Displays the OSPF neighbour information.			
26.	show ip ospf neighbor detail	Displays all OSPF neighbors in detail.			
27.	show ip route	Displays the IP routing table.			
28.	show protocols	Displays the routing protocols that have been configured and running on a specified router.			
29.	show running-config	Shows the current config stored in RAM.			
30.	show sessions	Shows the telnet sessions that are currently suspended.			
31.	show startup-config	Shows the configuration stored in NVRAM.			

Copyright © 2014 SimulationExams.com

CCNA Exam Simulator CCENT Exam Simulator

* All trademarks are duly recognized * Best printed in landscape mode **CCNP BSCI Exam Simulator**

23

CCNA ICND2 Exam Simulator

YOUR WAY TO CERTIFICATION SUCCESS

Cisco[™] CCNA : Show Commands

32.	show version	Display version information for the hardware and firmware.
33.	show arp	Displays entries in the ARP table.
34.	show ip protocols	Displays parameters and current state of the active routing protocol process.
35.	show users	Displays users connected to the router.
36.	show ipv6 interface <interface-name></interface-name>	Displays ipv6 interface configuration information.
37.	show ipv6 rip	Displays information about all current IPV6 RIP processes.
38.	show ipv6 ospf	Displays general information about OSPF routing processes.
39.	show ipv6 route	Displays routes in the IPV6 routing table.
40.	show ipv6 protocols	Displays parameters and current state of the active IPV6 routing protocol processes.
41.	show ip dhcp binding	Displays IP addresses assigned to the clients.

Switch Show commands			
SI. No.	Command	Explanation	
1.	show banner	Displays the banner.	
2.	show flash	Displays the file contents of the flash.	
3.	show history	Displays the last 10 commands entered.	
4.	show interfaces	To view interfaces, status, and statistics for an interface.	
5.	show interfaces vlan 1	Displays the VLAN status and the IP address of VLAN 1.	
6.	show ip interface brief	Verifies the IP configuration.	
7.	show running-config	Displays the config held in DRAM.	
8.	show startup-config	Displays the NVRAM config.	
9.	show users	Displays the users currently logged on.	
10.	show version	Display IOS version information for the hardware and firmware.	
11.	show vlan	Displays vlan information.	
12.	show vlan-membership	Displays vlan membership information.	
13.	show mac-address-table	Displays mac-address-table information.	
14.	show vtp status	Displays vtp status information such as vtp mode, vtp domain etc.	
15.	show spanning-tree	Displays spanning-tree statistics, including information about root bridge and port status.	
16.	show spanning-tree summary	Displays summary of port states.	
17.	show spanning-tree vlan <vlan-id></vlan-id>	Displays STP information for the specified VLAN.	

Copyright © 2014 SimulationExams.com

CCNA Network Simulator

CCNA Exam Simulator

CCENT Exam Simulator

CCNA ICND2 Exam Simulator